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In many applications, ranging from character recognition to signal de- 

tection to automatic target identification, the problem of signal classification is 

of interest. Often, for example, a signal is known to belong to one of a family of 

sets Ci,...,Cn and the goal is to classify the signal according to the set to which 

it belongs. The main purpose of this thesis is to show that under certain condi- 

tions placed on the sets, the theory of uniform approximation can be applied to 

solve this problem. Specifically, if we assume that sets Cj are compact subsets of 

a normed linear space, several approaches using the Stone-Weierstrass theorem 

give us a specific structure for classification. This structure is a single hidden 

layer feedforward neural network. We then discuss the functions which comprise 

the elements of this neural network and give an example of an application. 
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1. Signal Classification 

Signal classification is, quite simply, the process of examining a signal 

and determining a class, or group, from which it came. Humans perform many 

instances of signal classification each day, often without even knowing it. For 

example, one might read a signature (the signal) carefully to determine the 

author (the class). This might be a process that would be extremely hard for a 

computer to perform. 

There are numerous applications in military, civilian, and academic prob- 

lems that require the use of the field of signal classification. It would be fruitless 

to attempt to compile an exhaustive list of applications, so we will state and 

develop a few problems here in which the theory of signal classification plays 

an important role in the solution. 

Automatic Target Recognition 

The field of automatic target recognition is extremely important, primar- 

ily in the area of the military. The main purpose of automatic target recognition 

is the use of computer processing to detect and recognize signatures in sensor 

data [1]. These targets are most often in a cluttered environment and frequently 

in hostile territory. They may include such things as aircraft, missiles, tanks, 

or warships. The clutter in their background may come from temperature or 

pressure disturbances, atmospheric variations, topographical objects, or even 

other targets. 

There are typically two steps to an automatic target recognition problem: 

1 



detection and identification. Usually some relatively fast and coarse method is 

used to detect an object from background noise, and a slower more precise 

method is used to identify it. Typical features that are required to be extracted 

from the target when it is detected often include its position, its size and shape, 

and its speed. 

In order to measure these quantities, an automatic target recognition 

system will possess sensors such as high resolution cameras and complex radar 

arrays. These sensors will obtain data and send it to the processing portion of 

the system. The system will then determine first whether a target even exists 

and then attempt to identify the target. 

It is immediately very clear that the second portion of the problem (the 

identification) is basically a pure classification problem. Once it is determined 

that a tank is found, for example, it is important to be able to quickly determine 

whether the tank is friendly or hostile. An automatic recognition system thus 

frequently consists of several modules, one of which is the classifier. 

Usually the classifier is designed with the assumption that each input, 

once found, belongs to only one of the classes. This assumption will become 

important later because it will allow us to make use of some well-known math- 

ematical theorems in order to determine when classification may be possible. 

Pattern Recognition 

A second application of the theory of signal classification is in the field of 

pattern recognition. This is an extremely broad field, concerning a wide range 



of problems of practical interest, including character recognition and speech 

identification. 

One classical application is the reading of characters written either by 

hand or by machine. This application has a wide range of uses in government 

and commercial industry. For example, computers used by the post office are 

able to indentify machine-written letters on envelopes in order to sort them. 

Another important area deals with financial institutions. In these cases, the 

problem typically deals with classifying an input character into one of the thirty- 

six classes formed by the characters in the alphabet and the ten numerals. The 

area of printing is usually prescribed, so it is easy to locate and segment the 

characters. Some form of sampling is usually done, and then an algorithm 

determines the character. 

There are also several problems in the field of speech recognition that rely 

heavily on classification theory. These problems include the following: speaker 

identification, speaker verification, and isolated word recognition [16]. In a 

speaker verification system, the number of classes relates to the number of 

different individuals that one wishes to recognize. In isolated word recognition, 

the number of classes will depend on the "vocabulary" of the system and may 

be as large as 10,000. 

Many problems dealing with pattern recognition are found in the area 

of medicine as well. There are many applications that result in continuous 

functions, two-dimensional gray scale images, and time-varying images. These 

include results from electocardiograms, electroencephalograms, and X-ray im- 



ages, to name a few. Cell analyzers classify blood cells in a population and 

determine cell type. Signal classification routines are of enormous importance 

in gathering fast information from these and other biological data. 

These are just some of the many real-world applications in which signal 

classification plays a very important role. This makes it necessary to develop 

routines which are capable of performing well in signal processing problems. It 

is in this light that we consider the problem of determining a structure suitable 

for classification. 



2. Neural Networks 

It has long been recognized that the human brain functions in a com- 

pletely different way from the modern digital computer. There has been a great 

interest in studying how the human brain works and in determining whether it 

is feasible to design a model capable of solving problems in a similar manner. 

Ramon and Cajäl in 1911 introduced the concept of neurons as the basic ele- 

ments of the brain [11]. It has been determined that neurons process information 

one hundred thousand to one million times slower than a basic silicon gate chip. 

The brain compensates for this slower speed by possessing in the neighborhood 

of 10 billion neurons and 60 billion synapses, or interconnections between the 

neurons [21]. As a result the brain is capable of performing many tasks at rates 

much greater than even the fastest computer. It is in an attempt to emulate 

this capability of the brain that the field of neural networks, or artificial neural 

networks, was born. 

The history of neural networks dates back to the 1940's, when McCulloch 

and Pitts in 1943 proposed a computational model of an element resembling a 

neuron [3]. After some initial research, the idea faded until interest began to 

return in the 1980's. Since then, the field of neural networks has grown rapidly, 

with interest from researchers in a number of fields ranging from engineering to 

physics to psychology. 

A neural network, essentially, is a structure that attempts to model the 

way the brain performs some task and then to perform that task in a similar 

manner. The structure may be electronically built or simulated in software, for 
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example. A neural network will contain a large number of individual cells, which 

model the neurons, and a number of interconnections between them, which 

model the synapses. Often the information passed through the interconnections 

will be multiplied by constants in order to achieve a certain task. This is known 

as weighting. Haykin gives a definition as adapted from Aleksander and Morton 

in 1990: 

A neural network is a massively parallel distributed processor that 

has a natural propensity for storing experimental knowledge and 

making it available for use. It resembles the brain in two respects: 

1. Knowledge is acquired by the network through a learning pro- 

cess. 

2. Interneuron connection strengths known as synaptic weights 

are used to store the knowledge. 

The learning process mentioned here is often an attempt to modify the 

interconnection weights in order to accomplish the designated task. This at- 

tempt compares with the well-known field of adaptive filter theory, where filter 

weights are adapted over time until they approach a steady-state value. 

There are many benefits that arise from neural networks' inherent struc- 

ture. The following are some of them (see [11]). 

1. Nonlinearity.    The functions performed by the neurons are nonlinear; 

therefore the entire network, which is a weighted connection of these neu- 



rons, will also be nonlinear. This helps in modeling typical applications, 

which are often nonlinear. 

2. Input-output Mapping. One way in which the values for the weights used 

in the interconnections of the neural network are obtained is by a process 

called training. An example input is given, and weights are chosen so 

that the error between the actual output and some known desired output 

is minimized. This training procedure is repeated until the values of the 

weights reach a steady state (if possible). Thus the neural network learns 

by creating an input-output mapping. 

3. Adaptivity. A neural network has the property of adapting its synaptic 

weights in order to match a change in the surrounding environment. When 

it is operating in one environment, it may be retrained to operate in 

another environment which has only minimal changes. Further, a neural 

network operating in a nonstationary environment is able to adapt its 

weights in real time. 

4. Evidential Response. A neural network, when faced with a choice, is often 

able not only to select the right choice, but to give a confidence about the 

choice it made. For example, a neural network used for classification and 

given an input signal may output the class for that signal as well as how 

sure it is that that is actually the correct class. 

5. Fault Tolerance. Since each of the many neurons in a neural network 

stores an important bit of information, the network's power is distributed 
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over each of these neurons. This allows the network in theory to continue 

operating even when one of the neurons fails, though with some degrada- 

tion in performance. Neural networks are thus often marked by a gradual 

decay in performance instead of a single catastrophic failure. 

6. Uniformality of Analysis and Design. Because all neural networks are sim- 

ilar in a structural sense and the same notation is used in the applications 

of neural networks to different problems, they are in a sense universal. 

This is seen in the following properties: 

• Neurons are common to all neural networks. 

• This commonality allows for the sharing of information between neu- 

ral networks in different applications. 

• It is possible to build modular networks easily simply by integrating 

the different modules. In other words, parts of different networks 

(or even entire networks) may be used easily in conjunction with one 

another to create a new network. 

As neurons are the building blocks of a neural network, their modeling is 

most important. The basic design for a neuron is fairly simple. A set of synapses 

are input to the neuron. These interconnections are weighted by real numbers, 

the synaptic weights. These weighted values are then summed. Finally, this sum 

is passed through a (typically) nonlinear activation function. This function 

usually serves to limit the output of the neuron to some desired range, for 

example [0,1] or [—1,1].   An example of this model of a neuron is shown in 
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Synaptic 
Weights 

Figure 1: Nonlinear model of a neuron 

Figure 1. 

While the neurons themselves are modeled more or less the same regard- 

less of the application, there are different architectures for the actual network. 

We will be concerned with just one particular type, called a feed-forward net- 

work with one hidden layer. This network architecture consists of a large number 

of neurons arranged schematically in three layers. This may be seen in Figure 

2. 

In theory, each unit of the input layer may be connected to each unit of 

the hidden layer. This connection has a weight, which as mentioned above is a 

real number, associated with it. The weights are denoted by w^. So each unit 

on the hidden layer receives a weighted sum of elements from the input layer 

and then processes this sum with an activation function. Finally, the result of 

this activation is transmitted to the output layer with another set of weights 

and then summed. The result for the network structure shown in Figure 2 is: 

n s 
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Figure 2: A feed-forward neural network 

Finally, it is important to note that it is not necessarily possible to 

solve any problem simply by constructing a neural network at random and then 

attempting to train the weights. It is important to determine when a solution 

will be possible and what structure of network to try. Later it will be shown that 

a certain type of neural network is capable of solving an important classification 

problem. 
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3. Background 

Metric Spaces 

A type of space that will play a particularly important role in the study 

of approximation is a metric space. They are described in detail in many books, 

for example [9], [13], and [18]. 

Definition: A metric space is a pair (X, p) where X is a set of elements and 

p is a metric, or distance function, that is nonnegative and real-valued with the 

following properties: 

1. p(x, y) — 0 if and only if x = y; 

2. p(x,y) = p(y,x); 

3. p(x,y)+p(y,z) <p(x,z). 

Some examples of metric spaces are: 

Example 1: The set of real numbers with metric p(x,y) = \x — y\, referred to 

as MOT M1. 

Example2:  The set of all ordered n-tuples x = (xi,X2,-■ -xn), with metric 

p(x,y) = \HO, (xk — 2/fc)2. This space is generally referred to as Mn. 
Vfc=i 

Example 3: The set of continuous functions defined on a closed interval [a, b] 

with metric p(f, g) = max \f(t) - g{t)\. 
a<t<b 
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Example 4: This same set of continuous functions along with the metric 

P(f,9) = (f\f(t)-9(t)]2dt)^ 
Ja 

form a different yet equally valid metric space (known as L?(Mn). Thus, the 

metric as well as the set of points must be known in order for the space to be 

completely determined. 

Let X be a metric space with x0 e X and let r > 0. We define an open 

ball with radius r centered about xo (written b(xo,r)) to be the set of points 

x G X such that p(x, x0) < r. Let A C X. We define a point x € A to be an 

interior point of the set A if b(x, r) C A for some r > 0. That is, we can find 

an open ball surrounding the point x such that every point in the ball belongs 

to the set A. It is in this way that we go about defining open sets in a metric 

space. In fact, a set A C X is called an open set if all of its points are interior 

points. 

Example 1: Consider the set (0,1) in M. Given any point in the set, it is 

possible to choose an open ball of some radius such that the ball is contained 

in (0,1). Therefore, (0,1) is open in JR. 

Example 2: On the other hand, consider the set [0,1) in M and look at any 

open ball about the point 0 with radius r. Whatever the choice of r, there will 

be points contained in the ball that are not in [0,1) (for example, the point 

—r/2); therefore the point 0 is not an interior point of the set [0,1), Therefore 

the set is not open. 

Let X be a metric space and x £ X. We define a neighborhood of x as a 
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set containing an open set containing x. This open set will necessarily contain 

an open ball b(xo, e) for some e > 0. Therefore, every neighborhood of a point 

will contain an open ball of that point. Again let X be a metric space and let 

A C X. A point xelis called a contact point of A if every neighborhood of 

x contains at least one point in A. Obviously all x 6 A are contact points of 

A. If every neighborhood of x contains infinitely many points in A, then x is 

called a limit point of A. Note that a limit point is necessarily a contact point 

by definition. The closure of a set A, written as A, is simply the set of all the 

contact points of A. A set which is equivalent to its closure, (A = A) is known 

as a closed set. 

Example 1: Consider again the set [0,1) in JR. It is not possible to find an 

open ball about the point 1 that does not contain any points in [0,1). Therefore 

every neighborhood of 1 contains at least one point (in fact, every neighborhood 

contains infinitely many points) in the set [0,1). This implies that 1 is a contact 

point (and a limit point) of the set [0,1).   Since 1 ^ [0,1), the set does not 

coincide with its closure (in fact, as expected, [0,1) = [0,1]) and is therefore 

not a closed set. 

Example 2: On the other hand, the set [0,1] can be shown to be closed as its 

closure is the very same set [0,1]. 

One of the most important concepts concerning metric spaces is that of 

continuity. Let (X, px) and (Y, py) be metric spaces and let / be a function such 

that / : X —> Y. Then / is continuous at the point p € X ii for every e > 0 
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there exists a S > 0 such that py(f(x),f(p)) < e whenever px(x,p) < 6. 

A sequence {xn} in a metric space X is said to converge if there is a point 

p E X with the following property: For every e > 0 there is an integer N such 

that n> N implies that p(xn,p) < e. We write this as xn -» p or lim xn = p. 

We define {xn} to be a Cauchy sequence in a metric space X if for every e > 0, 

there exists a positive integer N such that \xn — xm\ < e for n, m> N. We can 

easily show that a sequence converges if and only if it is a Cauchy sequence. 

A metric space is said to be complete if every Cauchy sequence converges to a 

point in the space. The completeness of certain metric spaces is very important 

to proving results in those spaces. 

In a similar manner, we say that a sequence of functions {/„} from X to 

JR converges uniformly on X to a function / if for every e > 0 there exists an 

integer N such that n > N implies |/n(x) - f{x)\ < e for all x. We often write 

this as fn —» f uniformly. For a discussion in greater depth of convergence, see 

[19]. 

Topological Spaces 

Although metric spaces are usually the most general space needed, there 

may be times when a result may be proved for a more general space. It is for 

this purpose that we now introduce the topological space. 

Definition: A topological space is the pair (X, r) consisting of a set of points 

X and a topology r, where r is a family of subsets G C X, called open sets, 

with the following properties: 
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1. The set X itself and the empty set 0 belong to r. 

2. Arbitrary unions |J Ga and finite intersections  f) Gk of open sets belong 
a fc=l 

to T. 

The definitions of open and closed sets in a topological space X is quite 

simple. A set A C X is an open set if A belongs to r. A set B in a topological 

space X is a closed set if its complement X — B is open. 

We can also extend the concepts of a neighborhood, contact point, limit 

point, and closure of a set in a topological space. By a neighborhood of x, we 

mean any open set G containing x. A point x G X is a contact point of T C X 

if every neighborhood of x contains at least one point in T. A point x e X is a 

limit point of T C X if every neighborhood of z contains infinitely many points 

in T. Finally, the closure of a subset T of a topological space X is the set of all 

the contact points of T. 

Two important types of topological spaces are Hausdorff spaces and nor- 

mal spaces. A topological space X is called a Hausdorff space if: 

1. Sets consisting of single points are closed. 

2. For every pair of distinct points x and y in X, there are disjoint neigh- 

borhoods of x and y. 

A topological space is called a normal space if: 

1. Sets consisting of single points are closed. 
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2. For every pair of disjoint closed sets A and B, there are disjoint neighbor- 

hoods of A and B. 

Obviously, every normal set is Hausdorrf, though a Hausdorff set need 

not be normal. It can be verified that all metric spaces are topological spaces 

simply by taking r to be the family of open sets that are open in the metric 

space in the usual sense. This is very important as it allows any result relating 

to topological spaces to be applied to metric spaces as well. In fact, we get an 

even better result: all metric spaces are normal (and therefore Hausdorff). The 

contrasts, however, to both of these statements are not true. 

Example: The topological space consisting of only two points {0,1} where r 

consists only of the sets {0,1} (the entire space) and 0 is not a metric space. 

Continuity in a topological space is a somewhat different concept than 

continuity in a metric space as well. Let (X, rx) and (Y, ry) be two topological 

spaces and let / : X -¥ Y. Then / is continuous if f~l(A) £ rx for every A in 

Ty. In other words, continuity implies that the inverse image of an open set is 

open. 

A family M. of subsets Ma of a topological space X is called a cover of 

X if X C [jMa. If the sets Ma consist entirely of open sets, then we call the 
a 

family an open cover. A topological space is compact if every open cover has a 

finite subcover. 

Although metric spaces possess many of the nice properties that we 

would like to have for topological spaces, it is not true that all metric spaces 
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are compact. There are some theorems (see for example [14]), however, that 

allow us to determine whether a given metric space is compact without having 

to view it as a topological space. 

Let A and B be subsets of the metric space X. Then the set A is called 

an e-net for the set B if there exists a point xa € A such that for e > 0 any 

x e B, p(x,xa) < e. 

Theorem 1 (Hausdorff). For compactness of a set M of a metric space X it 

is necessary that there should exist a finite e-net of the set M for every e > 0. 

If the space X is complete, then the condition is also sufficient. 

Roughly speaking, a set is compact if we can find a finite number of 

points and take open balls centered at those points such that the union of all 

the open balls contains the set. There are some improvements to this if we 

consider certain specific spaces. 

Example 1: (Heine-Borel). A subset of JR is compact if and only if it is closed 

and bounded. 

Example 2: (Arzela). The functions of a set A are said to be uniformly 

bounded if there exists a constant K such that \x{t)\ < K for all x(t) G A. 

The same functions are equicontinuous if given e > 0, there exists a 8 > 0 such 

that \x(ti) — x(t2)\ < e whenever \t\ — h\ < S. A set A C C[0,1], the space 

of real-valued continuous functions on the closed interval [0,1], is compact if 

and only if A is closed and the functions x € A are uniformly bounded and 
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equicontinuous. 

Linear Spaces 

We now introduce the concept of a linear space. 

Definition: A nonempty set L is called a linear space if it satisfies the following 

axioms: 

1. Any two elements x E L, y E L uniquely determine a third element 

x + y E L called the sum of x and y that satisfies the following properties: 

(a) x + y = y + x (commutativity); 

(b) (x + y) + z = x + (y + z) (associativity); 

(c) L contains an element 0, called the zero element such that for all 

x E L, x + 0 = x; 

(d) For each x E L, there exists an element — x E L such that x + (—x) = 

0, where 0 is the zero element; 

2. There exists a product operation such that any element x E L and any 

number a determine a unique element ax E L such that: 

(a) a(ßx) = (aß)x 

(b) lxEL; 

3. The operations of addition and multiplication obey the following distribu- 

tive axioms: 
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(a) (a + ß)x = ax + ßx\ 

(b) a(x + y) = ax + ay. 

The elements x, y, ... of a linear space are often called vectors, and the 

entire space is often called a vector space. The numbers a, ß, ... are referred 

to as scalars and the entire set of allowable scalars is referred to as the field. 

Typically, the field is the set of real numbers, in which case the space is referred 

to as a real linear space. A subset LQ of a linear space L is referred to as a linear 

subspace of L if L0 itself is a linear space over the same field as L. 

It is possible that a linear space possess no topology whatsoever as long 

as it satisfies the three properties above. However, in many applications the 

concepts of a linear space and topological space are combined. A space that 

is both a linear space and a topological space is referred to either as a linear 

topological space or a topological vector space. We require additionally only 

that the vector operations of addition and multiplication (which are not always 

the usual addition and multiplication) be continuous in the topology r. It is 

possible too to apply the concept of a metric to a linear space, but what is more 

useful is to define an operation a bit more specific than a metric, called a norm, 

and apply it to a linear space. 

Normed Linear Spaces 

Definition: A linear space L equipped with an operation called a norm (|| • ||) 

is called a normed linear space if || • || satisfies the following three properties: 
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1. ||z|| > 0 for all x where ||a;|| = 0 if and only if x = 0; 

2. 11otrc11 = |a| ||a;|| for all x E L and all a; 

3. ||a; + y\\ < \\x\\ + \\y\\ for all x and y in L. 

Just as every metric space is also a topological space, every normed linear 

space may also be considered a metric space (and therefore a topological space 

as well) by taking the metric to be: 

p(x,y) = \\x-y\\. 

Again, the converse is not true. 

Example: The metric space consisting of the closed interval [0,1] with the 

"discrete metric" p(x, y) = 1 if x ^ y and p(x, x) = 0 cannot be made into a 

normed linear space. 

A normed linear space that is complete (in the same sense that a metric 

space is complete) is known as a Banach space. 

One special Banach space is called a Hilbert space. 

Definition: A Hilbert space is a Banach space with the norm ||a;|| =< x, x >ll2 

where < •, • > is an inner product with the following properties (assuming the 

space is real): 

1. <x,y>   =   <y,x > 

2. < axxi + a2x2,y>   = «i < xi,y > +a2 < x2,y> 
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3. <x,x >   >  0 for allz ^ 0. 

The most common example of a Hubert space is the n-dimensional space 

Mn, with the Euclidean norm ||a;|| = yZ)fc=ix\ where x = (xi,x2,-.-,xn). 

The Hahn-Banach Theorem and Separation in Linear Spaces 

One of the most important and fundamental results in all real analysis 

is the Hahn-Banach theorem. There are many different forms of the theorem 

and in most cases any version of the theorem can be used to directly prove 

any other version. It is first necessary to introduce the idea of convex sets and 

convex functionals. 

Definition: A set M c L is called a convex set if for each pair of points x, 

y e M, all points on the line segment joining x and y (that is, all points of the 

form kx + (1 + k)y, 0 < k < 1) are also elements of M. 

Definition: A functional p defined on a real linear space L is said to be convex 

if it has the following properties: 

1. p(ax) = ap(x) for all x e L and all a > 0; 

2. p(x + y) > p{x) +p(y) for all x, y e L. 

We now turn to the idea of extending a linear functional. Suppose we 

have a linear functional defined on a certain subspace. We want to know whether 

there exists a linear functional on the entire space that is equal to our first 
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functional on the subspace. The Hahn-Banach theorem tells us when this is 

possible. 

Theorem 2 (Hahn-Banach) Let p be a finite convex functional defined on a 

real linear space L and let L0 be any subspace of L. Let /o be any linear 

functional on L0 satisfying the condition 

fo(x) < p{x) 

on LQ. Then there exists a linear functional / on L, called the extension of /o 

such that / = /o at every point of L0 and f(x) < p(x) on L. 

Proof: We can assume that L0 ^ L. Let z be any element of L — LQ, and let 

L be the subspace generated by L0 and the element z, this being the set of all 

linear combinations of the form x+tz (x G L0,t e M). For / to be an extension 

of /o onto L, we need 

f(x + tz) = /» + f(tz) = /0(x) + tf(z) 

Now, let c = f(z) and note that if / is an extension onto L then fo(x) +tc < 

p(x + tz). This condition can easily translate to the two conditions: 

c < p(x/t + z)- f0(x/t) if * > 0 and c > -p(-x/t - z) - fQ(x/t) if* < 0 

So what remains is to show that there is always a c satisfying these conditions. 

In this light, let y\ and y2 be elements of L0. Then 

/o(jfe - Vi)   =   /o(ife) - fo(yi) < P(V2 ~ Vi) 

=  PÜV2 + z)~ (yi + z)) < P(V2 + z) +p(-yi - z). 
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So we get 

-/o(Sfe) +P(V2 + z)> -fo{yi) - p(-Vi ~ z). 

Now let a = sup[-/0(yi) - p{-yi - z)] and c2 = infjfc[-/o(jfc) + p(j/2 + z)]. 
yi 

Then c2 > ci and it simply remains to choose c2 > c > c\ and note that c 

satisfies the necessary conditions. So the functional ft defined on Lt satisfies 

the condition f(x) < p(x) for x 6 L. An induction argument not given here 

proves the case when L is the entire space L. 

By applying the Hahn-Banach theorem, we may show a somewhat more 

useful result, given in [2]. 

Theorem 3 Let / be a bounded linear functional defined on the subspace L of 

the real normed linear space X. Then, there exists a bounded linear functional 

F defined on the entire space X so that F(x) = f(x) forxeL and ||F|| = U/H.1 

Proof: Since / is a bounded linear functional, then for x € L, \f(x)\ < \\f\\ \\x\\. 

For x 6 X define p(x) = ||/||||a;||. It is then easy to show that p is convex and 

that f(x) < p(x). By the Hahn-Banach Theorem, extend / to a new functional 

F defined on all of X such that F(x) < p{x) = \\f\\\\x\\ and F(x) = f(x) for 

x G L. Clearly, F is bounded and ||F|| < ||/||. Similarly, if x E L, then |/(a;)| = 

\F(x)\ < ||F||||rc||, implying ||/|| < ||F||. Combining the two inequalities, we see 

that ||F|| = ||/|| and the proof is complete. 

JThe norm operator || • ||, when applied to a bounded linear functional on a normed linear 
space X (as is the case here) is defined as ||/|| =   sup |/(x)|.  Further, ||/|| can easily be 

INI<i 
shown to have the following properties: ||/|| = sup K&fi, and |/(a;)| < ||/||||ar|| for all x G X. 
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We now turn to perhaps the most useful corollary of the Hahn-Banach 

theorem. It is very desirable in many situations to know that there are a suf- 

ficient number of bounded linear functional defined on a space to strictly sep- 

arate the elements of that space. By strictly separate, we mean that for any 

two elements X\ and x2 of a linear space X, there exists an / G X*, the set of 

bounded linear functionals on X, such that f(xi) - f(x2) # 0. We prove this 

in the context of the following theorem. 

Theorem 4 Let X be a normed linear space and x0 G X, x0 ^ 0. Then there 

exists an F G X* such that ||F|| = 1 and F(xQ) = \\x0\\. 

Proof: Let L be the linear subspace of X generated by taking the linear span 

of x0. All elements in L will thus have a representation axo, a G M. Define 

the function / on L by f(ax0) = Oi\\x0\\- It is seen at once that f(x0) = \\xo\\ 

simply by taking a = 1. We can then extend / to a bounded linear functional 

F defined on the whole space X as noted in the previous theorem. Since F=f 

on L, F(xo) = f(xo) = \\xo\\- It thus remains only to show that ||F|| = 1. For 

any x G L, we see that 

1/0*01 = l/(aso)| = |a|||xo|| = \\axo\\ - INI, 

implying that ||/|| = 1 and therefore ||F|| = 1 by the previous theorem. 

To prove our assertion about the strict separation of elements in a linear 

space by the functionals defined on that space, let X be a normed linear space 

and X\ and x2 be distinct elements in X.   Further, let / G X*.   Now define 
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x0 = Xi — x2 and see that xQ ^ 0 since Xi and x2 are distinct.  We may now 

apply the previous theorem to get 

f{xi - x2) = f(x0) = \\xo\\ # 0. 
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4. The Stone-Weierstrass Theorem and Uniform Approximation 

In many applications, it is desirable to know whether a certain class of 

JR-valued functions may be useful in uniformly approximating a larger group of 

JR-valued functions. Weierstrass proved that it is possible to uniformly approx- 

imate any continuous functional on a compact subset of Mn by a polynomial in 

n variables. Since that time, there have been several different proofs of Weier- 

starass' theorem. One of the most useful is the one given by M. H. Stone in 

[23]. His primary result, which will be shown, generalizes Weierstrass' result in 

that it allows the domain to be any compact set (instead of just any compact 

subset of Mn) and the set of approximating functions to be a set other than 

polynomials (which may not have meaning on a general compact set). 

In order to generalize the theorem, we can view the polynomials as a 

subset of the set from which we obtain the approximating functional. We seek to 

know what functions may be derived from a certain set of prescribed functions by 

the specified algebraic operations of addition, multiplication, multiplication by 

real numbers and uniform passage to the limit. The set of prescribed functions 

for the polynomials, for example, consists of just two functions: /i (x) = 1 

and f2(x) = x defined on a bounded closed interval X of JR. From these two 

functions and the algebraic operations alone, the set of all polynomials may 

be formed. Weierstrass' theorem then tells us that the uniform passage to the 

limit of this set (the polynomials) is the set of all continuous functionals on X. 

Equivalently, the set of continuous functionals is the uniform closure of the set of 
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polynomials, or the continuous functions on X may be uniformly approximated 

by the set of polynomials. 

In order to begin proving this generalized theorem, it is instructive to 

consider the case of a general topological space X where the specified algebraic 

operations are the lattice operations V and A defined to be: 

/ V g = max(/, g)       and       / A g = min(/, g) 

These form the functions h and k defined as: 

h(x) = max(f(x),g(x))       and       k(x) = mm(f(x),g(x)) 

for any x G X. Let C be the set of all continuous real functions on X and 

C0 be a prescribed subfamily of C. We want to obtain the family U(C0) of all 

functions which can be formed from the functions in C0 by the application of 

the specified algebraic operations and uniform passage to the limit. In the case 

of the lattice operations, it is easily observed that U(C0) is a part of C closed 

under uniform passage to the limit, that is 

U(C0) C C,       U(U(C0)) = U(C0). 

The first property may be shown by observing that the mappings 

x—> max(f(x),g(x))       and       x—> min(f(x),g(x)) 

are continuous. This follows from the continuity of / and g (necessarily true 

since CQ is a subfamily of C) and the continuity of the max and min mappings. 

Now since the uniform limit of continuous functions is also a continuous function, 

27 



clearly U(C0) C C. To show that U(U(C0)) = U(C0), we can form U(C0) in 

two steps. First, let Ui(C0) be the set containing all the functions obtained by 

applying the lattice operations alone to the functions in C0. Then let U2(C0) 

be the set consisting of the functions obtained from those in U\ (Co) by uniform 

passage to the limit. Clearly, 

Co C C^Co) C C^Co) C I7(Co). 

It remains to show that [^(Co) is closed under the allowable operations, and 

therefore ^(Co) = U(Co). Let / be a function which is a uniform limit of 

functions fn in [^(Co). Then / must also be in U<I{CQ) since given e > 0, 

there exists a function gn in Ui(CQ) such that \fn — gn\ < e/2 since C/2(Co) is, 

by definition, the functions obtained by passing those in Ui(C0) to a uniform 

limit. Also, \f — fn\ < e/2 since our definition of / was a uniform limit of fn. 

Therefore, \f — gn\ < e and / is a uniform limit of functions gn in Ui(C0) and 

therefore a member of C/2(C0) We must now show that whenever / and g are in 

£^2 (C0), then so are / V g and / A g. This can be done by observing that if / 

and g are uniform limits of functions /„ and gn in Ui(C0), then / V g and / A g 

are uniform limits of /„ V gn and /„ A gn, respectively. 

Theorem 5 Let X be a compact space, C the family of all continuous real 

functions on X, CQ an arbitrary subfamily of C, and U(CQ) the family of all 

functions (necessarily continuous) generated from Co by the lattice operations 

and uniform passage to the limit. Then a necessary and sufficient condition for 

a function / in C to be in U(C0) is that, whatever the points x, y e X and 
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whatever the positive number e, there exists a function fxy obtained by applying 

the lattice operations alone to Co and such that 

\f{x) - fxy(x)\ < e and \f(y) - fxy(y)\ < e. 

Proof: The necessity is obvious. A proof of the sufficiency, which is not com- 

plicated, is given in [23]. There, Stone also notes the following corollary to the 

theorem. 

Corollary 1: If C0 has the property that, whatever the points x, y G X, x ^ y 

and whatever the real numbers a and ß, there exists a function /0 in C0 for 

which fo(x) = a and fo(y) = ß, then U(Co) = C. 

This tells us that the way in which a function / acts on pairs of points in 

X determines whether it can be approximated U(C0). This observation leads 

to the following theorem. 

Theorem 6 Let X be a compact space, C the family of all continuous (neces- 

sarily bounded) real functions on X, Co an arbitrary subfamily of C and U{CQ) 

the family of all functions (necessarily continuous) generated from Co by the 

linear lattice operations and uniform passage to the limit. Then a necessary 

and sufficient condition for a function / in C to be in U(C0) is that / satisfy 

every linear relation of the form ag(x) = ßg(y) , aß > 0, which is satisfied by 

all functions in CQ. The linear relations associated with an arbitrary pair of 

points x, y in X must be equivalent to one of the following distinct types: 

1. g(x) = 0 and g(y) = 0; 
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2. g(x) = 0 and g{y) unrestricted, or vice versa; 

3. g(x) = g(y) without restriction on the common value; 

4. g(x) — Xg(y) or g(y) — Xg(x) for a unique value A, 0 < A < 1. 

Corollary 1: In order that U(Co) contain a nonvanishing constant function, it 

is necessary and sufficient that the only linear relations of the form ag{x) = 

ßg{y), aß > 0, satisfied by every function on C0 be those reducible to the form 

9(x) = g(y)- 

Proof: It is obvious that when U(C0) contains a nonvanishing constant func- 

tion then conditions (1), (2), and (4) can never be satisfied, so only (3) must be 

considered. 

Corollary 2: In order that U(C0) = C, it is sufficient that the functions in X0 

satisfy no linear relation of the form (l)-(4) of Theorem 1. 

This is an important corollary because in practice it is easy to consider 

a set of functions with the property that all functions do not satisfy all of the 

relations (l)-(4). 

Definition: A family of arbitrary functions on a domain X is said to be a 

separating family (for that domain) if, whenever X and y are distinct points 

of X, there is some function / in the family with distinct values f(x), f(y) at 

these points. 

Corollary 3: If X is compact and if Co is a separating family for X and contains 
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a nonvanishing constant function, then U(Co) = C. 

Proof: Since Co contains a nonvanishing constant function, it may satisfy only 

condition (3) of Theorem 2. However, since C0 is a separating family, there is 

a function f E C0 such that f(x) / f(y) for x, y in X. So condition (3) is not 

satisfied by all functions in Co. Therefore none of the conditions are satisfied 

by Co and therefore U(CQ) =C. 

We now consider the case where U(CQ) is built from the functions in 

C0 C C using the operations of addition, multiplication, multiplication by real 

numbers (the linear ring operations), and uniform passage to the limit. If/ and 

g are uniform limits of the sequences fn and gn respectively, the product fg is 

not in general the uniform limit of the sequence fngn. We therefore require that 

the set C consist of the bounded continuous functions on X. Of course, this is 

satisfied automatically when X is compact. This leads to the general theorem. 

Theorem 7 Let X be a compact space, C the family of all continuous (nec- 

essarily bounded) functions on I, C0 an arbitrary subfamily of C and U(C0) 

the family of all functions generated from C0 by the linear ring operations and 

uniform passage to the limit. Then a necessary and sufficient condition for a 

function / in C to be in U(C0) is that / satisfy every linear operation of the 

form g(x) = 0 or g(x) = g(y) which is satisfied by all functions in X0- 

Proof: As a lemma, one can show (see [23]) that if / is in U(C0) then so is 

|/|.  This means that / is the uniform limit of functions in C0 subject to the 
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linear ring operations. Using a well known representation of the min and max 

functions: 

max(a, b) = -(a + b + \a — b\) 

min(a, b) = -(a + b— \a — b\) 
Zi 

we can now see that whenever / and g are in U(C0) then / V g and / A g 

are in U(CQ) as well. So U{CQ) is closed under the linear lattice operations as 

well as the linear ring operations and uniform passage to the limit. Therefore 

the results in Theorem 2 are applicable here. It remains to show that every 

function in U(X0) cannot satisfy linear relations of the form given in condition 

(4) of Theorem 2. Assume g(x) — Xg{y) for every function g in U(CQ) and every 

x, y in X, for 0 < A < 1. Then for every / in U(C0), f
2 is also in U(C0) and the 

relations f2(x) = Xf2(y) and Xf2(y) = X2f2(y) would hold, implying that either 

f(y) = 0 for every / in U(C0) or A = 0,1, the second being a contradiction to 

the assumption. So we conclude that / is in U(C0) if and only if it satisfies all 

relations of the form g{x) = 0 or g(x) = g(y) satisfied by those functions in Co. 

We give a definition in order to restate the general theorem. 

Definition: A family A of real functions defined on a set X is said to be an 

algebra if (i) / + g € A, (ii) fg € A, and (iii) cf e A for all / G A, g G A and 

for all real constants c, that is, if A is closed under addition, multiplication, and 

multiplication by real numbers. 

An equivalent form of the general theorem that is often used in practice 
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is stated in [19] as follows: 

Theorem 8 Let A be an algebra of real continuous functions on a compact set 

K. If A separates points of K and if A does not vanish at any point in K, then 

any real continuous function on K may be approximated by an element of A. 

An argument in [4] extends the theorem to certain normed linear spaces that 

are not necessarily compact. 

Theorem 9 Let X be a normed linear space (or, indeed, any Hausdorff topo- 

logical space). If A is a subalgebra of C(X), the continuous functions on X, 

that contains constants and separates the points of X, then A is dense in C(X). 

Proof: Let / be any element of C(X). We must prove that each neighborhood 

of / contains an element of A. Let AT be a compact set in X and e a positive 

number. By restricting / and all members of A to the compact set K, we 

can apply the classical version of the Stone-Weierstrass Theorem in C(K). Its 

conclusion is that the set 

{g\K : g € A} 

is dense in C(K). Hence there is an element g in A such that ||/ — g\\x < e. 

Now we give some examples from Stone's original article. 

Theorem 10 Let X be an arbitrary bounded closed subset of n-dimensional 

Cartesian space, the coordinates of a general point being xi,...,xn. Any con- 

tinuous real function / defined on X can be uniformly approximated by polyno- 

mials in the variables xi:... ,xn. In case the origin x = (0,..., 0), the function 
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/ can be uniformly approximated by polynomials vanishing at the origin if and 

only if / itself vanishes at the origin. Otherwise / can be uniformly approxi- 

mated by such polynomials without qualification. 

This is the classical approximation theorem proved by Weierstrass. 

Theorem 11 Let / be an arbitrary continuous real function of the real variable 

9, 0 < 6 < 27T, subject to the periodicity condition /(0) = /(27r). Then / 

can be uniformly approximated on its domain of definition by trigonometric 

polynomials of the form 

a        N 

p(9) = — + ^2 (an cos wo + bn sin n6). 
2 71=1 

Theorem 12 Any continuous real function /, which is defined on the interval 

0 < x < oo and vanishes at infinity in the sense that lim f{x) = 0, can be 

approximated by functions of the form e~axp(x) where p(x) is a polynomial. 

Theorem 13 Any continuous real function / which is defined on the interval 

—oo < x < +00 and which vanishes at infinity in the sense that 

lim f(x) =   lim  fix) = 0 

can be uniformly approximated by functions of the form e~a x p(x) where p(x) 

is a polynomial. 

Several of these examples will prove useful shortly. 
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5. Neural Network Approximation of Continuous Maps 

We now will examine a structure that has been proven in useful for ap- 

proximation. The structure will be based almost entirely on a proof in [20]. We 

assume that we have a normed linear space X and a subset C that is nonempty 

and compact. We let X* represent the set of bounded linear functionals on X 

and Y represent a set of continuous maps which are dense in X* on C in the 

usual sense. That is, for each <j) E X* and for some e > 0, there exists a, y EY 

such that \(/>(x) — y(x)\ < e for x E C. Further, for k = 1,2,3,... we let Dk be 

any family of continuous maps h : Mk ■-> M such that given a compact E c Mk 

and any continuous g : E i-» M as well as a > 0 there exists an h E Dk such that 

\g(x) — h(x)\ < a for x G E. Let U be any set of continuous maps U : M\-> M 

such that given a > 0 and any bounded interval (A,#2) C M there exists a 

finite number of elements ui}..., ut of U for which | exp(ß) — Y,j Uj{ß)\ < 0 for 

0e(A,A). 

Theorem 14 (Sandberg) Let / : C H» M. Then the following conditions are 

equivalent. 

(i) f is continuous. 

(ii) Given e > 0 there are a positive integer k, real numbers c\,...,Ck, elements 

ui,...,Uk ofU, and elements y\,...,yk of Y such that 

\f(?)-HcjuAVi(x)]\ <e 

3 

for x EC. 
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(Hi) Given e > 0 there are a positive integer k, elements yi,...,yk ofY, and 

an h 6 Dk such that 

|/(aO-%i(aO,...,j/fc(x)]| < e 

for x E C. 

Proof: First, assume condition (i) holds.   Let V be the set of all functions 

v : C i-> M such that 

in which the sum is finite and a,j € M and (J)j EX*. To see that V constitutes 

an algebra as defined above, observe that 

exp(0(x)) exp(^(x)) = exp(0(x) + tp(x)) = exp(^ + ip)(x)- 

Taking <j> = 0 we can see that V contains constants. Finally, we have demon- 

strated previously that the Hahn-Banach theorem guarantees that we can choose 

an x and y in C such that <p(x — y) ^ 0. Therefore, exp((j)(x)) ^ exp(cf>(y)), so 

V separates the points of C. We may now apply the Stone-Weierstrass theorem 

guaranteeing uniform approximation on compacta. In other words, for e > 0, 

there are a positive integer n, real numbers di,...,dn, and elements zi,...,zn 

of X* such that 
n 

\f(x)-Y,djexp{zj(x))\<e/3 
3=1 

for x 6 C. 

Assume that £,• \dj\ ^ 0. Choose j > 0 such that jT,j \dj\ < e/3. Let 

[a',b'] be an interval in M that contains all of the sets Zj(C), and let a e M 
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and b E M such that a < a and b > b'. That is, the interval [a, b] contains the 

interval [a ,b']. Now, choose v > 0 such that | exp(ßi) - exp(/?2)| < 7 for ßu 

#2 6 [a, b] with |/?i - ^21 < v. Clearly this is possible because of the continuity 

of the exponential function. Set p — min(v, a —a,b—b) and choose yj e Y such 

that \zj(x)— yj{x)\ < p, x G C for all j. This gives \exp(zj(x))—exp(zj(x))\ < j, 

x G C for each j. Now using a version of the triangle inequality, this gives: 

|/(s)-E«P(*i(*))l   £   |/(x)-Eexp(^(x))| 
3 3 

+   I £ expfo- (x))-J2 exP(«70*0) I 
i 3 

< e/3 + X! Mill exp(^-(x)) - exp(%(x))| 
i 

< 2e/3, 

for x e C. 

Now we choose ui,..., ui e U so that 

|exp(/3)-5>(/?)|<7l)/3e[a,&] 
i 

where 7l Ej |^| < e/3. Then, 

\f(x) "EE^feWll ^ 1/0*0 - E^iexP[%W]l + I Yldjexplyjix)] 
3      i 3 3 

~ 12 5Z djUilvjix))I < (2e)/3 + J2 \d3 «Pll/jO*)] - rfi H «W»)]I 
i    «' i i 

< (2e)/3 + Y/\dj\\exp[yj(x)} -5>fo(a0]| < (2e)/3 + 7iEldil < e- 
i i 3 

Now, since SjSt^i^ibi^)] *s equivalent to ^2j CjUj[yj(x)], with the Cj, 

Uj, and y7- in JR, U, and y, respectively, we have shown that (i) —> (M). 
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to f(x) 

Figure 3: A general structure for approximation 

To show that (ii) ->■ (iii), let e > 0 and suppose that there exist k, 

C\,..., Cfc, and ui,...,Uk such that 

I/O*) ~ EwIi/iO«:)]! < *A* e C. 

Let heDk satisfy |/»(A) - Ej CjUj(x)\ < e/2 for A e [°> &]*• Then 

\f(x) - h{[yi(x),... ,y*(x)]| < |/(x) - EciMi[%"(x)]l+ 
j 

| 53 Cj-u^i/jfc)] - h(yi(x),..., Vk(x)]\ < e/2 + e/2 = e 

for x € C 

Finally, (w) —» (i) as / is a uniform limit of continuous functions and 

therefore continuous itself. 

This proof has demonstrated a general structure that may be used for 

approximation. This structure is shown below in Figure 3. 

Part (iii) of the theorem shows that the y/s are simply functions which 

are capable of approximating linear functionals defined on the space X (these 
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may actually be linear functionals themselves) while the structure for h is simply 

a continuous memoryless nonlinear system capable of approximating uniformly 

on compacta in Mk. In other words, the problem of approximating a function 

whose domain may be any compact subset of any normed linear space has been 

reduced to the problem of approximating a function on Mk, a subject about 

which a great deal is known, and has been shown to some extent in dealing 

with the Stone-Weierstrass theorem. Stiles, Sandberg, and Ghosh have shown 

in [22] that structures of a similar form have use in the approximation of certain 

nonlinear discrete time mappings as well. 

Part (ii) of the theorem gives a specific example of the structure of 

the network. Again it takes the y/s to be uniform approximations of linear 

functionals on X. Here one possible structure for h is shown as below in Figure 

4. The Uj's, as mentioned before, are drawn from a set capable of uniform 

approximation of the exponential function on a bounded set in JR. In the 

simplest case, from the perspective of the theorem, each Uj may be taken to be 

the function exp(-). 

In a moment we will determine possible choices for the elements Uj in 

the approximation network. Now we will look at a similar method of dealing 

with this problem given in [4], [7], and [24]. We start be defining a certain class 

of functions, called ridge functions and then immediately give the theorem. 

Definition: A function / : X t-t JR is called a ridge function if it may be 

represented in the form f = g ° <j>, where g : JR i-> M and <f> £ X*, where X* is 

the space of continuous linear functionals on X. An alternative equivalent form 
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«1 C\ 

Uk Ck 

Figure 4: A structure for h 

of this composite function is f(x) = g((f>(x)) for x G X. 

It can easily be shown, for example, that all ridge functons on ]Rn can 

be written in the form 

f(x) = g(ai& + CI2C2 H 1" dnCn) 

wherea;=(Ci,C2,..-,Cn)eJRn. 

Theorem 15 (Cheney) Let G be a fundamental set in C(M)2 and let X be a 

normed linear space. Let $ be a subset of X* such that the set 

4/|M|:4€«,*?£0 

is dense in the unit sphere of X*. Then the set of ridge functions {g o 0 : g e 

G, 4> € $*} is fundamental in C(X).3 

2A subset Y of X is said to be fundamental in X if its linear span is dense in X. Thus, 
n 

there are elements yi,...,yn£Y such that for any x € X and e > 0, \x — J2 cjVj\ < e where 
i=i 

Cj € R. 
3C(X) is, of course, the set of continuous, real-valued functions on the normed linear space 

X. 
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Proof: Let / be a member of C(X), C a compact set in X, and e > 0. We 

have shown above that there exist Uj e C(1R) and yj E X* such that 

\\f(x)-j:ujoyj\\<e/3 
j=i 

for x € C. By adjusting the functions Uj as necessary, we can assume that 

HJ/JII = 1 for 1 < j < m. Let M = supseC ||x||. Choose S > 0 so that when 

\s\ < M, \t\ < M, and \s - t\ < 6 we get \UJ(S) - Uj(t)\ < e/3P for 1 < j < P. 

This is, of course, possible because the Uj are continuous. Now select (f>j E <& so 

that ||0j/||<£j||-2/j|| < S/M for 1 < j < P. Let A; = 1/||^|| and // = max,,- ||^||. 

Select cijk G M and gjk € G so that for \T\ < /j,M we have 

MV) - E aJ*9jk(t)\ < e/ZP (1 < j < P). 
k=l 

Now let xeC. Then ||x|| < M, \yj(x)\ < M, \\j<j>j(x)\ < M, and 

\yj(x) - Xjhix)] < \\x\\\\yj\\\\Vi ~ AifcH < M(6/M) = S. 

From the definition of S (i.e., let s = Vj(x) and t = Aj^-(x)) we get 

IE M%(*)) - E hjiWjWl < E t/*p =eA 

Now, because |^j(a;)| < ||<^||||a;|| < (J,M, the definition of djf. and p^ gives 

p P   N p 

IE hiMj(x)) - E E aik9jk{<t>j{x))\ < E e/3P =e/3- 
j=l i=l *=1 j=l 

Now, by a simple application of the triangle inequality, we get 

I/W-EE«ä(^))I < l/(z)-i>;(2/;(z))l 
j=ifc=i i=i 
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+1E htäM*)) - E hj(xj(x))\ +1E WWfc)) - E E wMWl <«■ 
j=i i=i j=i j=ik=i 

P    N S 
Since £ E ajk9jk{4>j{x)) may be written as £ Cjgj((j)j(x)), we get the desired 

i=ifc=i 3=1 

result: 

l/(*)-E^i(^(a;))l<€fara;eC'- 

We note many similarities between this proof and part of Sandberg's. 

The set of functions G in Cheney's theorem is similar to the set of functions U 

in Sandberg's, but the requirement in Sandberg's theorem on U is less stringent. 

The set U is required only to approximate one specific function in C(M), namely 

the exponential function, exp(/?), on a certain bounded set. Cheney's theorem, 

on the other hand, requires that the set G be fundamental in C(M). This means 

that any continuous function defined on a compact set in JR is capable of being 

approximated by the set G. 
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6. Approximation and Classification 

As previously mentioned, the problem of classifying signals plays an im- 

portant role in a variety of problems. We attempt to provide the framework 

for a solution to some of these problems by restating the problem in a more 

mathematical sense. 

We assume first that all of the signals to be classified are drawn from 

a normed linear space. For simplicity, we will further assume that each signal 

may belong only to one of the classes. For example, assume that there are n 

different classes Ci,..., Cn that are all subsets of a normed linear space X, and 

that each signal received must necessarily belong to exactly one of the classes. 

We now have the framework whereby we can view the classifier as a 

mathematical function / that takes the signal to be classified as input and 

produces the desired class as output. For example, if x € Cj, then f(x) = a,j, 

where a,i,...,an are all distinct integers, would model a classification system 

whereby each element of class Cj be mapped to the integer CLJ. A graph of this 

simple function is shown in Figure 5. Our assumption that each signal may 

belong to only one class means that the sets Cj are pairwise disjoint. 

In order to apply the theorems that we have developed, it is helpful to 

assume that the sets Cj are compact. This assumption will, of course, exclude 

certain classification problems from the scope of these theorems. We now can 
n 

let C = U Cj. The set C will now also be compact as it is the union of a finite 

number of compact disjoint sets. Finally, since the function / is constant on 

each set Cj and the distance between any pair of sets is positive, the function 
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Figure 5: Representation of a classifying function 

/ is continuous. With these assumptions, we get the following: 

1. There are real numbers cx,...,Ck, elements yi,---,Vk £ Y, a positive 

integer n, elements Ui,...,un oil! and e > 0 such that 

dj — e < 53 cjuj[yj(x)] < aj; + e 

i=i 

for a; € C,- and j = 1,..., m. 

2. There are a positive integer k, elements y\,...,Vk of Y and an h e Dk 

such that 

ttj-e< h[yi(x),..., yk(x)] < Uj + e 

for x € Cj and j = 1,..., m. 

These follow directly from Sandberg's theorem. 
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Figure 6: A classifying network 

This now allows us to use the above approximation network for the pur- 

pose of classification. We require one additional element and that is a quantizer 

Q. This quantizer is simply a real functional Q : M ■->• M such that Q maps num- 

bers in the interval (a,- —e, ctj+e) to Oj. As long as we choose e < 0.5 min \a{—a,j\, 

then this quantizer, when following a network of the structure defined above, 

will allow the correct class to be output. This gives an entire structure for a 

classification network. It is shown in Figure 6. The structure for h as defined 

in part (ii) of Sandberg's theorem is used in the figure. 

We now turn to demonstrating some acceptable choices for the hidden 

elements in our classification network. In all cases, the complete structure of 

the network is as in Figure 6. No assumption is made about the number n (how 

many elements are necessary) or the determination of the constants Cj. We are 

concerned entirely with determining suitable choices for the Uj and give several 

examples as well as a justification for each here. In each case, the yj will be 

assumed to be either bounded linear functionals on X or elements capable of 
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uniformly approximating them. 

Polynomial Networks 

A polynomial network is simply one in which each Uj is a polynomial. 

In the ridge function form, a polynomial network will be of the form 

5>x ° & = £ £ cii[Mx)]3- 
i i     j 

The original Weierstrass Approximation theorem showed that polynomi- 

als were capable of approximating on JR. Now, either Theorem 14 or Theorem 

15 tells us that polynomials, when placed in the network, are capable of solving 

the classification problem. 

Exponential Networks 

An exponential network in which each of the elements Uj is of the form 

exp(-) is the most basic to justify as the proof of Sandberg's theorem is based 

on showing first how the exponential functional is capable of being used as 

the nonlinear element and then showing how a function capable of uniformly 

approximating it on a bounded interval is also acceptable. 

Continuous Sigmoidal Networks 

A more complicated but extremely important type of network that is 

useful for classification is a continuous sigmoidal network. It is first necessary 

to define a sigmoidal function. 

Definition: A functional a : M i-> JR is called a sigmoidal function or sigmoid 
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if 

lim a(t) = 0 and lim a(t) = 1. 

In 1989, Cybenko (see [8]) proved that for any compact set C C Mn, any 

/ € C(C), and for any e > 0 there exists a function g of the form 

m 

9(x) = Yl aJa(< 7i>x > +%)        0&I 7i e -K"' ^ e ^) 

where a is a continuous sigmoidal function such that 

\g(x) - f(x)\ < e for all x £ C. 

In other words, this sum of translations and dilations of a sigmoidal func- 

tion is capable of uniformly approximating any bounded continuous functional 

on a compact subset of Mn. Sandberg mentions in [20] that given that the 

statement is true for n = 1, the (i) —» (ii) section of his proof quickly extends 

the result for n > 1. Indeed, if we let X be simply Mn, the elements ?/,• be linear 

functionals defined on JRn, and Uj{x) = Cj<r(ajX+ßj) where c,-, ctj, ßj E M. This 

gives us a sum of the type desired for n > 1. 

In [5], Cheney demonstrates as a result of the general theory of ridge 

functions that the result is applicable when the elements of the vectors jj and 

the numbers $j are integers. In fact, the theorem is given as follows. 

Theorem 16 Let g be a continuous function on M such that the limits of g(t) 

as t —> oo and t —» —oo exist and are different. Put gij = g(jt + i). Then 

{dij '■ h j ^ ^} is fundamental in C(JR). 
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The proof of this theorem relies on measure theory, making use of the 

Riesz Representation Theorem and the Dominated Convergence Theorem. It is 

beyond the scope of this thesis but can be found in [4]. 

It is seen that this theorem allows g to be a continuous sigmoid, but does 

not require it. The only importance when using the translations and dilations is 

that the limits at oo and at -co are not the same. It was mentioned earlier that 

often times it is desired that the output of the activation function in a neural 

network be in a certain range such as [0,1]. Sigmoidal functions fit nicely into 

this framework. 

Finally, we can show at once that these shifted and scaled sigmoidal func- 

tions are capable of approximating on any normed linear space by using either 

of the two main theorems after noting that they are capable of approximating 

on JR. 

Squashing Function Networks 

The previous section has dealt with the use of translations and dilations 

of continuous sigmoidal functions. In this section, we will deal with certain type 

of sigmoid that is not necessarily continuous, a squashing function, and attempt 

to obtain a similar result. A squashing function is defined in [12] as follows: 

Definition: A function \I> : M t-t [0,1] is a squashing function if it is nonde- 

creasing, lim M>(A) = 1, and   lim  \&(A) = 0. 
A-»-oo A—►-oo 

It is seen at once that this definition simply requires that ^ be a nonde- 

creasing sigmoidal function (not necessarily continuous). Some useful squashing 
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functions include the threshold function, tf (A) = 1{A>O} where 1{.} is the indi- 

cator function; the ramp function, \&(A) = A1{0<A<I} + 1{A>I}! 
and the cosine 

squasher (see [10]), .* (A) = (1 + cos[A + 37r/2])(l/2)l{_pi/2<A<7r/2} + l{A>7r/2}- 

Hornik et al. first define what they call a sigma-pi network and prove 

certain results pertaining to it. Following this, they extend the results to a 

network resembling those that have been mentioned above. We proceed as did 

he, considering only the 1R1 case. 

Definition: For any measurable function G mapping JR to JR, let £ ü1^) De 

the class of functions 

{f-.JR^JR: f(x) = Y,ßi ft G(Ajk(x)),    x,ßj G JR,Ajk G A,q = 1,2,...}. 
i=i     *=i 

where lj G IN and A is the set of all affine functions from M to M, that is, the 

set of all functions of the form A{x) = wx + b where w, b G JR.  Networks of 

this form are referred to as sigma-pi networks. 

Definition: For any measurable function G mapping M to M, let Z)1(G!) be 

the class of functions 

{f-.M^M: f(x) = Y,ßjG{AAx)),    x,ßj G R,Aj eA,q=l,2,...}. 
i=i 

This form of this second network clearly resembles the continuous sig- 

moidal network that was shown above if G is taken to be a continuous sigmoidal 

function. The shifting and scaling that was present above is simply performed 

49 



by the affine functional here; only the notation is different.  For now, we will 

continue to let G be any function. 

We now give the main result that applies here. 

Theorem 17 For every squashing function \I>, EX(*) is uniformly dense on 

compacta in C(M). 

Proof: We proceed by first proving several lemmas that will aid in the proof. 

Lemma 1: Let G : M i-> M be continuous and nonconstant. Then YlI^iG) is 

uniformly dense on compacta in C(1R). 

Proof: We can apply the Stone-Weierstrass Theorem here. Let C C M be 

any compact set. For any G, YIU.1^) is obviously an algebra on C. If x, 

y G C, x 7^ y, then we can find an Ai £ A such that G(Ai(x)) ^ G(Ai(y)). 

To show this, pick a, b 6 JR, a ^ b such that G(a) ^ G(b). Then choose ^i(-) 

to satisfy Ax{x) = a and Ai(y) = b. Then G(Al(x)) ^ G(Ai(y)). This ensures 

that X)II(G0 is separating. Now we must show that SII1^) vanishes on no 

point of C. Pick b € M such that G(b) ^ 0 and A2(x) = 0 • x + b. For all 

x € C, G(A2(x)) = G(b) ^ 0, so this is a nonvanishing constant function. The 

Stone-Weierstrass theorem now guarantees that £ n1 (G) is capable of uniformly 

approximating any continuous functional on C. 

This lemma shows that the sigma-pi networks are capable of uniform 

approximation of any continuous function on a compact set regardless of the G 
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with the only requirements that G be continuous and nonconstant.  We have 

not yet required that G be a squashing function. 

Lemma 2: Let F be a continuous squashing function and ^ be an arbitrary 

squashing function. For every e > 0 there is an element He of E1^) such that 

sup|F(A)-#e(A)|<e. 
AeJR 

Proof: Choose e > 0 and assume without loss of generality that e < 1.  We 

must now find constants ßj and affine functions Aj, j G {1,2,..., Q — 1} such 

that 

snp\F(X)-±ßj^(Aj(X))\<e. 
AeiR j-i 

Choose Q such that 1/Q < e/2. For j G {1,2,..., Q - 1}, set ßj = 1/Q. Pick 

M > 0 such that *(-M) < e/2Q and *(M) > 1 - e/2Q. Such an M can 

be found because ^ is a squashing function. For j G {1,2,...,Q — 1}, set 

Tj = sup{A : F(X) = j/Q}. Set rQ = sup{A : F(X) = 1 - 1/2Q}. Because F is a 

continuous squashing function, such r/s exist. Now, for any r < s, let Ar,s G A 

be the unique affine function satisfying Ar<s(r) = M and ATtS(s) = — M.  The 
Q-l 

desired approximation is then He = J2 ßj^(Ar r,+1(A)). We can easily check 

that on the intervals (-co, n], (n,^],..., (rQ_u rQ], (rQ, oo), |F(A) - He(X)\ < 

e. 

Lemma 3: For every squashing function ^, every e > 0, and every M > 0 there 

is a function cosAf,€ G Z)1^) such that 

sup    | cosMe(A) - cos (A) | < e. 
\e[-M,M] 
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Proof: Let F be the cosine squasher previously defined. By adding, subtract- 

ing, and scaling a finite number of affinely shifted versions of F, we can get the 

cosine function on any interval [-M, M]. Since F is continuous, we may apply 

Lemma 2 and the triangle inequality to easily obtain the result. Indeed, let G 

be an element of X)1(1äf). We then have on the interval [-M, M], 

\G(X) - cos(X)|    <     |G(A) - F(X)| + \F(X) - cos(X)\ 

=    |G(A)-F(A)| + 0 

< e 

where the last line followed from Lemma 2. 

Lemma4: Let g(-) = X) ßjCOs(Aj(-)),Aj E A. For arbitrary squashing func- 

tion ty, arbitrary compact C C M, and for arbitrary e > 0, there is an / 6 X)1 (*) 

such that supl6C \g(x) - f(x)\ < e. 

Proof: Pick M > 0 such that for j E {1,2,.. .,Q}, Aj(C) C \-M,M). Be- 

cause Q is finite, C is compact and the A(-) are continuous, such an M can 
Q 

be found.   Let Q\ = Q - Y, \ßj\-   From Lemma 3, for all x e C we have 
i=i 

Q 
| 2 ßjcosM,e(Aj(x)) — g(x)\ < e.   Because COSM,S/Q € S1^), we see that 
i=i 

/(•) = E?=i COSM^/Q^C-)) € Ei(*)- 

Now we turn to proving the theorem. By Lemma 1, the trigonometric 
Q       h 

polynomials {£ ßj f[ cos(Ajk(-)) : Q,lj £ JN,ßj E M,Ajk E A} are uniformly 
j'=l       k=i 
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dense on compact sets in C(R). By repeated application of the trigonometric 

identity cos(a) cos(&) = cos(a+&) -cos(o-fe), we may write every trigonometric 
T 

polynomial in the form £ atcos(At(-)) where at G M and At £ A. The desired 
t=i 

result now follows from Lemma 4. 

This now gives us another class of acceptable functions for the Uj in 

Figure 6, and choosing a squashing function will ensure that the output of each 

Uj is always between 0 and 1. 

Radial Basis Function Networks 

An important type of function that may be used in some classifying 

networks is the radial basis function, and more specifically, the Gaussian basis 

function. While we cannot generalize that in all cases a basis function network 

may be used for uniform approximation, there are some examples that are 

useful. Information about the universal approximation capability of radial basis 

function networks may be found in [17]. We define a radial basis function as a 

function which depends only on the norm of the argument. In other words, if / 

is a radial basis function and \\x\\ = \\y\\, then f(x) = f(y). 

We now give an example of a case when uniform approximation is pos- 

sible using a radial basis function network. In this particular instance the basis 

functions are Gaussian, functions that have other useful properties for approx- 

imation networks. Let if be a Hilbert space with inner product < •, • > and 

norm || • || defined in the usual way. We are interested mainly in H — Mn 

with ||x|| = 52jx]- Let C C H be compact and let V C H be nonempty, con- 
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vex, and satisfy the condition that for xu x2 E C with Xi ^ x2 there exists 

u E V such that ||a;i - u\\ / \\x2 - u\\. We can, for example, take V to be C 

as long as C is convex, or we can take V to be any nonempty convex subset 

of H containing an interior point. Let P be a nonempty subset of (0, oo) or 

(-oo,0) that is closed under addition. Finally, let L = {g : C t-> 1R : g(x) = 
m 
Y, aj-exp(-aj||a; - Vj\\2),m < oo,aj € M,CCJ € P,Vj 6 V.  It is immediately 
i=i 
seen that the structure of L is of the form needed for the elements Uj in Figure 

6. With these assumptions we get the following theorem. 

Theorem 18 Let / : C ■-» M be continuous and let e > 0. Then there exists a 

jGl such that 

|/(a)-j(tt)|<6,a6C. 

Proof: Using the property above and the convexity of V, we see that given a1} 

a2 G M, ai, Q!2 € P, and u1; v2 € V 

ai exp(-o;1||x - Vi||2)a2 exp(-a2|k - v2\\2) = &exp(-(oji + a2)\\x - w\\2) 

for some b E M and w E V. Also we can see that <x\ + OL2 G P. So L is an 

algebra. Choose xi and x2 in C and assume that xi ^ rc2. Then ||a;i - v\\ ^ 

||x2 —1;|| for some v E V by our first assumption.. Therefore exp(—a||a;i — v\\) ^ 

exp(—a\\x2 — v\\) so L separates the points of C. Therefore, by the Stone- 

Weierstrass theorem, the proof is complete. 

Thus, in this somewhat less general compact space, the Gaussian basis 

functions are capable of uniformly approximating any continuous function in 
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JR. They therefore may be used as the elements Uj in our original network. 
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7. Applications 

Classifier Example 

At this point we are ready to give an example of an actual classification 

network using the framework that we have provided. This example will also 

show how the mathematical formulations that we have been making relate to 

the problems related to signal classification that were initially discussed. 

Let X be the space of continuous real-valued functions defined on [0,1]" 

with || • || the usual sup norm. Let k and r be positive constants and let Lip(fc) 

denote the subset of X consisting of the elements of X that satisfy a Lipschitz 

condition: \x(a) — x(b)\ < k\a — b\ for all a and b. This is a typical way to deal 

with a good class of nonlinear functions. Let x%2,... ,xm be distinct elements 

of Lip(fc) and let Cj = {iG Lip(A;): ||a; - Xj\\ < r} for each j = l,2,...,m. 

Now assume that r < (1/2) min^- ||j — Xj\\. It is clear that the Cj are 

pairwise disjoint if this condition is satisfied. Since each Cj is a closed bounded 

subset of X that is equicontinuous on [0,1]", we get a result thanks to the 

Arzela-Ascoli theorem (see [15]) showing that the Cj are compact. As we have 

shown earlier, since the Cj are compact and pairwise disjoint, the union \Jj Cj 

is also compact. 

We now introduce a theorem in [20] without the proof given there. 

Theorem 19 Let X denote the normed linear space of M-valued continuous 

functions on X := [0,1]", with the usual max norm. Let g e X*, and let e > 0. 

Then there are points an,...,ap El, points C\,..., cp 6 1R, and a q e X such 
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that 
p 

sup \g(x) - Y^ cMaj)\ < € 

and 

sup \g(x) — / q(a)x(a)da\ < 
xEC 

This theorem shows that a classifier can be found in this case using a 

simple sampling and summing operation or an integration. It applies directly 

to our example at hand since we are working on [0,1]". We now know that it 

is possible to classify the signals in our example using the structure in Figure 

6 where the functional yj performs the sampling and summing or integration 

operation 

This problem is very applicable to the examples discussed earlier. If n = 

1, 2, or 3, we are classifying continuous signals in one, two, or three variables. 

This is the kind of sensor input that we might have in the automatic target 

identification and pattern recognition examples that were mentioned earlier. 

Conclusions 

We have described a specific neural network structure that is capable of 

solving certain classification problems. This structure has the form of a single 

hidden layer feedforward neural network and therefore possesses the advantages 

of neural networks that were mentioned above. It has a simple framework that 

is easily built in hardware or simulated in software. 

It is important to note that there are limitations to the methods pre- 

sented here.   All of the proofs are existence proofs.   They guarantee that a 
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solution is possible and in some cases give a general idea on how it might be ac- 

complished. For example, we have seen how certain classes of functions such as 

sigmoids and polynomials are capable of being used as the activation functions 

(the Uj) in a classifying neural network. What has not been determined is the 

number of nodes needed. We can only say that classification is possible with a 

finite number of nodes. Further, we have not given a certain method of finding 

the weights Cj in Figure 6. This is typically what we referred to as training the 

neural network. 

In spite of these shortcomings, we have succeeded in providing a general 

framework capable of studying the important problem of signal classification. 

We have accomplished this by using well-known theorems dealing with approx- 

imation. This area of research is fairly new and has proven extremely useful so 

far, and interest in it will continue to grow in the future. 

58 



Bibliography 

[1] J.-P. Antoine and P. Vandergheynst, "Target detection and recognition using 

two-dimensional isotropic and anisotropic wavelets," Fifth International Con- 

ference on Automatic Object Recognition, pp. 20-31, 1995. 

[2] G. Bachman and L. Narici, Functional analysis, New York, Academic Press, 

1966. 

[3] D. Burr, "Artificial neural networks: a decade of progress," Artißcial Neural 

Networks for Speech and Vision, Chapman and Hall, New York, 1994. 

[4] E.W. Cheney, "Chapter 1: Ridge Functions," course notes for class Approx- 

imation Theory, Fall 1997. 

[5] E.W. Cheney, "Chapter 2: Sigmoidal Ridge Functions," course notes for 

class Approximation Theory, Fall 1997. 

[6] E.W. Cheney, "Chapter 25: Artificial Neural Networks," course notes for 

class Approximation Theory, Fall 1997. 

[7] Charles K. Chui and Xin Li, "Approximation by Ridge Functions and Neural 

Networks with One Hidden Layer," Journal of Approximation Theory, Vol. 70, 

pp. 131-141, 1992. 

[8] G. Cybenko, "Approximation by Superpositions of a Sigmoidal Function," 

Mathematics of Control, Signals, and Systems, Vol.   2, No.   4, pp.   303-314, 

59 



1989. 

[9] N. Dunford and J. Schwartz, Linear Operators, John Wiley and Sons, Inc., 

New York, 1988. 

[10] A. R. Gallant and H. White, "There exists a neural network that does not 

make avoidable mistakes," IEEE Second International Conference on Neural 

Networks, pp. 1:657-664, 1988. 

[11] S. Haykin, Neural Networks, Macmillan College Publishing Company, New 

York, 1994. 

[12] K. Hornik, M. Stinchcombe, and H White, "Multilayer Feedforward Net- 

works are Universal Approximators," Neural Networks, Vol. 2, pp. 359-366, 

1989. 

[13] A. N. Kolmogorov and V. S. Fonin, Introductory Real Analysis, Dover 

Publications, Inc., New York, 1970. 

[14] L. A. Lusternik and V. J. Sobolev, Elements of Functional Analysis, Fred- 

erick Ungar Publishing Co., New York, 1961. 

[15] A. Mukherjea and K. Pothoven, Real and Functional Analysis, Frederick 

Ungar Publishing Co., New York, 1960. 

[16] H. Niemann, Pattern Analysis, Springer-Berlag, New York, 1981. 

[17] J. Park and I. W. Sandberg, "Universal Approximation Using Radial-Basis- 

60 



Function Networks," Neural Computation, Vol. 3, pp. 246-257, 1991. 

[18] W. Rudin, Functional Analysis, McGraw Hill, New York, 1973. 

[19] W. Rudin, Principles of Mathematical Analysis, Third Edition, McGraw 

Hill, New York, 1976. 

[20] I. W. Sandberg, "General Structures for Classification," IEEE Transactions 

on Circuits and Systems, Vol. 41, No. 5, pp. 372-376, May 1994. 

[21] G. M. Shepherd and C. Koch, "Introduction to synaptic circuits," The 

Synaptic Organizations of the Brain, Oxford University Press, New York, 1990. 

[22] B. W. Stiles, I. W. Sandberg, and J. Ghosh, "Complete Memory Structures 

for Approximating Nonlinear Discrete-Time Mappings," IEEE Transactions on 

Neural Networks, Vol. 8, No. 6, pp. 1397-1409, 1997. 

[23] M. H. Stone, "A Generalized Weierstrass Approximation Theorem," Studies 

in Mathematics, Prentice Hall Inc., Englewood Cliifs, NJ, 1962. 

[24] X. Sun and E. W. Cheney, "The fundamentality of sets of ridge functions," 

Aequationes Mathematicae, Vol. 44, pp. 226-235, 1992. 

61 



VITA 

William Christopher Pritchett was born in Houston, Texas on September 

1, 1973, the son of Carol Coulter Pritchett and Joseph Luden Pritchett, III. 

After completing his work at Highland Park High School, Dallas, Texas, in 

1992, he entered The United States Naval Academy in Annapolis, Maryland. 

He received the degree of Bachelor of Science from The United States Naval 

Academy in May, 1996. Additionally, he was commissioned as an Ensign in the 

United States Navy in May, 1996. In August, 1996, he entered The Graduate 

School at The University of Texas. 

Permanent Address: 1825 Wroxton Rd 

Houston, Texas 77005 

This thesis was typed by the author. 

62 


